Please use this identifier to cite or link to this item: http://kmutnb-ir.kmutnb.ac.th/jspui/handle/123456789/412
Full metadata record
DC FieldValueLanguage
dc.contributorPHURIN CHONPANen
dc.contributorภูรินท์ ชลพันธุ์th
dc.contributor.advisorSAK SITTICHOMPOOen
dc.contributor.advisorสัก สิทธิชมภูth
dc.contributor.otherKing Mongkut's University of Technology North Bangkoken
dc.date.accessioned2025-12-17T02:50:35Z-
dc.date.available2025-12-17T02:50:35Z-
dc.date.created2526
dc.date.issued8/6/2526
dc.identifier.urihttp://kmutnb-ir.kmutnb.ac.th/jspui/handle/123456789/412-
dc.description.abstractThis research investigated the use of dielectric-barrier-discharge non-thermal plasma (DBD-NTP) for nitrogen oxide (NOx) abatement in flue-gas applications, combining ozone generation and its subsequent utilisation for NO oxidation. A systematic experimental was conducted, comprising verification of the inverted tracer-gas method, evaluation of ozone-generation characteristics under various discharge parameters, up-scaling of multi-cell reactors, and ozone-assisted oxidation of NO in real diesel-flue-gas streams. The inverted tracer-gas technique was validated as a reliable and economical approach for determining volumetric flow rates, maintaining strong linearity (R2 ≈ 0.99) across 25–210 °C. Ozone generation was strongly influenced by discharge voltage, frequency, oxygen concentration, and gas-flow rate. The three-cell reactor achieved 11946 ppm ozone and 0.29 g/min production rate, while the two-cell configuration revealed the highest overall energy efficiency (6.21 µg/J). In real flue-gas experiments, ozone injection effectively converted NO to NO2, achieving up to 50 % conversion with 0.815 µg/J efficiency at optimal conditions (O3/NO ≈ 2.35).These findings demonstrate that DBD-NTP technology provides a low-temperature, modular, and scalable approach for plasma-assisted NOx control. Integration of ozone pre-oxidation with catalytic after-treatment offers a practical pathway toward enhanced DeNOx efficiency and reduced energy consumption in industrial exhaust systems.en
dc.language.isoen
dc.publisherKing Mongkut's University of Technology North Bangkok
dc.rightsKing Mongkut's University of Technology North Bangkok
dc.subjectNTPen
dc.subjectDBDen
dc.subjectozone generationen
dc.subjectNO oxidation and inverted tracer gasen
dc.subject.classificationEngineeringen
dc.subject.classificationElectricity, gas, steam and air conditioning supplyen
dc.subject.classificationMotor vehicles, ships and aircraften
dc.titleNITROGEN OXIDES ABATEMENT FROM FLUE GAS VIA NON-THERMAL PLASMAen
dc.titleการบำบัดมลพิษไนโตรเจนออกไซด์จากไอเสียด้วยระบบนอลเทอร์มอลพลาสมาth
dc.typeThesisen
dc.typeวิทยานิพนธ์th
dc.contributor.coadvisorSAK SITTICHOMPOOen
dc.contributor.coadvisorสัก สิทธิชมภูth
dc.contributor.emailadvisorsak.s@cit.kmutnb.ac.th,saks@kmutnb.ac.th
dc.contributor.emailcoadvisorsak.s@cit.kmutnb.ac.th,saks@kmutnb.ac.th
dc.description.degreenameMaster of Engineering (วศ.ม.)en
dc.description.degreenameวิศวกรรมศาสตรมหาบัณฑิต (M.Eng.)th
dc.description.degreelevelMaster's Degreeen
dc.description.degreelevelปริญญาโทth
dc.description.degreedisciplinePower Engineering Technologyen
dc.description.degreedisciplineเทคโนโลยีวิศวกรรมเครื่องต้นกำลังth
Appears in Collections:COLLEGE OF INDUSTRIAL TECHNOLOGY

Files in This Item:
File Description SizeFormat 
s6603026810022.pdf1.94 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.