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ABSTRACT 

Manipulator arms in rescue robots remain a challenge in both competitions and real -life 

situations. In this paper, we present an autonomous in-house manipulator system specifically 

engineered to enrich object interaction in rescue robotics for the RoboCup Rescue Robot Competition 

2024 as a contestant under the iRAP Robot Team. The manipulator is equipped with an RGB-D 

camera, providing pose estimation of objects by leveraging 3D models generated through prior 

scanning. YOLOv8 2D object detection is employed to identify objects in the scene, and cropped 

depth images are used to subsequently generate object point clouds. Iterative Closest Point (ICP) 

techniques, including point-to-plane, point-to-point, and color registration, are utilized in conjunction 
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system also uses IMU data from the RGB-D camera for manipulator impact detection. The entire 
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motion planning and control. The methodologies and innovations introduced in this work are adapted 

for deployment in the challenging and unexpected environments of the RoboCup Rescue Robot 
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 CHAPTER 1  
INTRODUCTION 

 

1.1  Background 

   Rescue robots have become indispensable tools in emergencies and disaster areas 

where human involvement poses significant risks or is altogether impractical. These 

environments such as collapsed buildings, earthquake zones, or areas exposed to 

hazardous materials often present extreme conditions where uneven terrain, unstable 

debris, and limited visibility challenge both the mobility and sensing capabilities of 

autonomous systems. Consequently, the ability to detect, identify, and manipulate 

objects within these environments is critical to facilitate essential tasks, including 

locating and extracting survivors, delivering supplies, and clearing obstructed paths. At 

the core of effective rescue robotics lies in robust object interaction. Robots must not 

only navigate complex, unpredictable terrains but also reliably detect, track, and 

manipulate a broad variety of objects whose shapes, sizes, and positions may vary 

dramatically. Conventional approaches to object detection and interaction, while 

continually improving, can still struggle with issues such as partial distortion, poor 

lighting conditions, and the presence of obstacles in dynamic environments. Accurate 

object recognition and responsive control strategies are vital for ensuring the robot can 

adapt to unexpected challenges without necessitating continuous human intervention. 

In recent years, advancements in sensor technologies and artificial intelligence have 

opened new frontiers in autonomous manipulation. By leveraging state-of-the-art 2D 

and 3D vision systems, rescue robots can construct richer environmental models, 

enabling more precise localization and control. In particular, RGB-D cameras offer both 

color (RGB) and depth (D) information, making it possible to generate real-time 3D 

reconstructions of the surrounding area. This enhanced perception facilitates more 

accurate object detection and pose estimation, which is essential for successful grasping 

and manipulation. Additionally, software frameworks like the Robot Operating System 

(ROS) and motion planning tools such as MoveIt further streamline the development 

of complicated robotic behaviors by providing modular libraries for tasks like path 

planning, collision avoidance, and inverse kinematics calculations.  

Within the context of the RoboCup Rescue Robot competition, these cutting-edge 

techniques are put to the test in an environment designed to simulate real-world rescue 

scenarios. The competition evaluates various facets of a robot’s performance from 

mobility in rough terrain to the dexterity required for handling critical objects under 

stringent guidelines inspired by established standards, such as ASTM International for 

Urban Search and Rescue (USAR) Robots. By integrating an advanced robotic arm 

capable of fully automated operations, teams aim to demonstrate how higher levels of 

autonomy can significantly increase the robot’s versatility while minimizing demands 

on human operators, especially in fast-paced, high-stakes situations. Through 

sophisticated control algorithms and state-of-the-art sensors, such an arm can identify, 

grasp, and manipulate objects with minimal manual input. This higher degree of 

autonomy not only allows robots to take on tasks that would be hazardous or impractical 

for humans but also frees operators to focus on strategic decision-making rather than 

detailed, time-consuming controls. In emergency missions where every second counts 

the fully automated arm can execute rapid interventions, like closing valves or 
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removing debris, without the constant oversight that simpler systems require. By 

reducing the manual burden, human operators can better direct their attention to 

mission-critical analyses, thereby boosting efficiency, reducing errors, and enhancing 

overall mission success. 

Ultimately, this research seeks to further refine and validate the robotic arm’s 

capabilities in object interaction by combining 2D and 3D vision, RGB-D sensing, 

robust motion planning, and competition-proven performance. Through iterative 

development and rigorous testing against real-world challenges, the approach aspires 

to push the boundaries of rescue robotics, contributing to safer and more effective 

emergency response strategies worldwide. 

 

1.2  Objective 

1.2.1  To develop a system capable of detecting and interacting with objects in 

rescue environments efficiently. 

1.2.2  To apply RGBD cameras for 3D object detection and position analysis, 

utilizing the Iterative Closest Point (ICP) technique to match and align point cloud data 

between scanned objects and real-world data. 

1.2.3  To integrate ROS and MoveIt for planning and controlling the robotic arm’s 

movement in the RoboCup Rescue Robot competition. 

 
1.3  Scope of the Study 

1.3.1  Study and understand the ROS and MoveIt systems for planning and 

controlling robotic arm movements. 

1.3.2  Design a system for detecting and interacting with objects in rescue 

environments using a robotic arm. 

 
1.4  Utilization of the Study 

1.4.1  To develop an automated system for object interaction in rescue 

environments. 

1.4.2  To support the work of rescue robot operators by enhancing robotic 

capabilities. 

 

 

 

 

 



 

 

 

 

CHAPTER 2  
LITERATURE REVIEW 

 

 Research in rescue robotics has been growing rapidly due to the increasing 

frequency and severity of natural disasters worldwide. The RoboCup-Rescue initiative 

set an early precedent for this field by illustrating how robots can be effectively 

deployed in disaster mitigation scenarios. According to the RoboCup-Rescue project 

[1] focused on developing technology and standardized tests that enable robots to 

navigate hazardous environments, locate survivors, and perform critical tasks under 

real-world constraints. More recently, iRAP Robot showcased advancements in robot 

design and system integration for the RoboCup Rescue league [2], underscoring the 

competition’s contribution to accelerating innovation and pushing the boundaries of 

robotics research. Based on the literature review, a broad spectrum of robotic processes 

can be grouped into key thematic areas that capture both foundational theories and 

practical applications. These areas address various technical challenges from how 

robots plan and execute movements, to how they detect and manipulate objects in 

dynamic environments. By examining these categories, researchers can better 

understand the interconnections among the different facets of robotic systems and pave 

the way for more robust, efficient, and adaptable solutions. The following sections 

outline five principal domains identified in the literature: 

 2.1  Motion Planning and Trajectory Optimization 

 2.2  Bin Picking, Object Detection, and Pose Estimation 

 2.3  3D Mapping, Localization, and Sensor Sensitivity 

 2.4  ICP (Iterative Closest Point) and Alignment Algorithms 

 2.5  Impact Sensing 

 

2.1  Motion Planning and Trajectory Optimization 

 A core challenge in rescue robotics is ensuring safe and efficient motion planning, 

particularly in debris-filled or unpredictable terrains. Traditional path planning methods 

can be computationally expensive or prone to local minima when dealing with high-

dimensional manipulator arms. MoveIt provides a variety of motion planners such as 

OMPL, CHOMP, STOMP, and the Pilz Industrial Motion Planner to calculate and plan 

trajectories for a manipulator. In this work, I will focus on using MoveIt to control the 

manipulator arm that the structure of the system is same as FIGURE 2-1. 

 

 
FIGURE 2-1  The Diagram of Control Manipulator Procedure 
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2.1.1  OMPL (Open Motion Planning Library) 

  In MoveIt, one of the most widely used frameworks for motion planning is 

the Open Motion Planning Library (OMPL). It provides a range of sampling-based 

algorithms, such as Rapidly exploring Random Trees (RRT) and Probabilistic 

Roadmaps (PRM). These algorithms work by randomly sampling the robot’s 

configuration space to find feasible paths from a start to a goal pose, focusing primarily 

on collision-free feasibility. As a result, they are highly effective in high-dimensional 

spaces, which makes them suitable for complex robotic arms. While they excel at 

quickly finding feasible solutions, these paths may require additional smoothing or 

optimization if a more optimal path such as one minimizing travel distance or time is 

required. 

2.1.2  CHOMP (Covariant Hamiltonian Optimization for Motion Planning) 

  CHOMP takes a gradient-based approach to trajectory optimization, starting 

with an initial trajectory (often a simple interpolation) and then iteratively refining it to 

reduce collision risk and enhance smoothness. By leveraging gradient information, 

CHOMP adjusts each segment of the path in a continuous manner, typically converging 

to a trajectory that balances collision avoidance and smooth kinematics. However, 

because it relies on local gradient information, CHOMP can become trapped in local 

minima if the environment is cluttered or if the initial trajectory is not well-chosen. 

2.1.3  STOMP (Stochastic Trajectory Optimization for Motion Planning) 

  STOMP blends elements of gradient-based optimization with stochastic 

sampling, injecting random perturbations into the path at each iteration. This stochastic 

element helps the planner escape local minima more effectively than purely 

deterministic methods. As a result, STOMP can handle complex cost functions and 

high-degree-of-freedom robotic systems where standard gradient-based methods might 

struggle. However, the computational overhead can be higher, and thorough parameter 

turning such as noise levels and cost function weights may be necessary to achieve 

robust results. 

2.1.4  Pilz Industrial Motion Planner 

  Designed with industrial applications in mind, the Pilz Industrial Motion 

Planner places a high priority on safety and deterministic behavior. Its trajectory 

generation strategies are optimized around predictable, smooth motion that adheres to 

specified velocity, acceleration, and jerk limit requirements that are often mandated in 

production environments. Because of this focus on reliability, the Pilz planner may be 

less flexible than research-oriented planners like OMPL, CHOMP, or STOMP. 

Nonetheless, it is a go-to option for industrial robotics tasks where compliance with 

strict performance and safety standards is critical. 

 In this thesis, STOMP (Stochastic Trajectory Optimization for Motion Planning) 

from MoveIt is selected for its ability to iteratively refine paths through stochastic 

optimization [3]. Additionally, MoveIt is widely recognized for manipulator control, 

supported by an active community and numerous developers dedicated to its continuous 

improvement. Owing to its inherent flexibility, STOMP can handle complex cost 

functions, making it particularly suitable for navigation in cluttered environments and 

for manipulation tasks where avoiding collisions is critical. Advanced planners like 

STOMP are essential for operations such as object manipulation, where the robot must 

account not only for a collision-free path but also for precise end-effector positioning. 

The manipulator arm in this thesis is custom-made, featuring a unique prismatic joint 
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in the middle. Testing has shown that STOMP effectively handles the motion planning 

for this arm. 

 

2.2  Bin Picking, Object Detection, and Pose Estimation 

 Research into bin picking a problem analogous to picking objects from disordered 

piles provides valuable insights for object interaction in rescue settings, where a robot 

might encounter random debris or items of interest. Studies have proposed both 2D and 

3 D vision-based techniques, emphasizing robust pose estimation to enable successful 

grasping of unknown or partially occluded objects.  

 

 
FIGURE 2-2  System Overview for Bin-Picking 

 

 In reference [4], the authors outline a complete bin picking pipeline that integrates 

calibration, 3D modeling, perception, trajectory planning, and simulation as in 

FIGURE 2-2. Below is a step-by-step summary of their approach, which provides 

insight into how stereo vision and depth sensors can be leveraged for precise object 

detection and manipulation in bin picking scenarios 

2.2.1  Calibration (Camera and Eye-to-Hand) 

  The calibration process for aligning the camera and manipulator, known as 

eye-to-hand calibration, involves several steps to ensure accurate mapping of the 

camera's data to the manipulator’s coordinate system. The process begins with camera 

calibration, which establishes the intrinsic parameters of the camera, such as focal 

lengths, optical center, and lens distortion coefficients. This is achieved by capturing 

images of an industrial chessboard or calibration board with known dimensions from 

various angles and distances. The resulting data is used to compute the camera's 

intrinsic matrix (K), which defines how 3D points project onto the camera's 2D plane, 

while also correcting for lens distortions. By following this, system calibration, or 

extrinsic calibration, determines the transformation matrix between the camera and the 

robot’s base. This involves using an ArUco marker board, strategically mounted within 

the manipulator’s workspace. The marker is attached to the manipulator’s end-effector 

and moved to various predefined poses. Using the robot's forward kinematics, the 

position and orientation of the end-effector are calculated and aligned with the camera's 

observations. This alignment produces the transformation matrix, capturing the 

translation and rotation between the camera and the robot base.  
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FIGURE 2-3  The Show of Eye-to-Hand and Eye-in-Hand Relative 

 

 Once the intrinsic and extrinsic parameters are established, they are combined 

during the eye-to-hand calibration step to create a comprehensive transformation 

matrix. This matrix translates object positions detected by the camera into the robot’s 

coordinate system, ensuring spatial alignment as FIGURE 2-3. To validate the 

calibration, the system tests its ability to detect a known object in the workspace and 

moves the robot to the corresponding position. Any discrepancies between the detected 

position and the robot's actual position are adjusted iteratively to refine the accuracy. 

This process ensures that the manipulator can reliably interpret sensor data from the 

camera, enabling precise actions in tasks like object picking or interaction within the 

workspace. 

2.2.2  3D Modeling (Reference Point Cloud for ICP) 

  The process of 3D modeling for creating a reference point cloud begins with 

generating a detailed 3D model of the target object, which is then stored as a reference 

for comparison during operation. In this approach, an RGB-D camera is used to capture 

both RGB images and depth images of the object from multiple angles as in FIGURE 

2-4. To facilitate accurate data acquisition, the object is placed on an ArUco marker 

board, which provides precise positional and orientation data for each capture. The 

captured images are processed to create individual point clouds, which are subsequently 

merged into a single unified model using iterative techniques. This process involves 

methods like plane segmentation to remove background noise and techniques such as 

statistical outlier removal and voxel downsampling to enhance the quality of the point 

cloud. 

 The resulting reference model serves as a "template" for comparison with real-time 

sensor data acquired during system operation. When the system is running, Iterative 

Closest Point (ICP) algorithms are employed to align the incoming point cloud data, 

representing the current view of the object in the bin, with the pre-generated reference 

model. By iteratively refining the transformation between the two data sets, ICP ensures 

precise alignment even in scenarios where the target object is partially occluded or 

randomly oriented. This accurate and robust modeling and matching process underpins 
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the system’s ability to reliably identify and manipulate objects in complex 

environments 

 

 
FIGURE 2-4  The 3D Modeling Process 

 

2.2.3  Perception (Pose Estimation) 

  The perception process for pose estimation begins once the incoming point 

cloud data is aligned with the reference 3D model. Using the alignment provided by the 

Iterative Closest Point (ICP) algorithm, the system calculates the object's 6-DoF pose, 

which includes its position and orientation in space. This pose estimation is crucial for 

enabling the robot to determine the appropriate approach and grasping strategy for the 

object. The process relies on robust methods to ensure accuracy even in challenging 

conditions, such as cluttered or noisy environments. After aligning the object’s point 

cloud to the reference, techniques such as Principal Component Analysis (PCA) are 

used to calculate the mean and eigenvectors of the point cloud, providing a foundational 

understanding of the object’s orientation relative to the camera. Additionally, advanced 

feature-based methods like Fast Point Feature Histograms (FPFH) are applied to refine 

the pose estimation further, especially in cases of partial occlusion or random 

orientations. 

 To integrate this information into the manipulator's workspace, the estimated pose 

is transformed from the camera’s coordinate frame to the robot’s base frame using the 

transformation matrix derived during the calibration process. This comprehensive 

approach to pose estimation ensures the system can reliably and precisely identify the 

location and orientation of objects, facilitating successful interaction and manipulation. 
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FIGURE 2-5  The MoveIt Trajectory Instance 

 

2.2.4  Planning (MoveIt with STOMP) 

  The planning process for robot motion begins once the object’s pose is 

determined, focusing on generating a collision-free trajectory for grasping the object. 

This process leverages the MoveIt motion planning framework in combination with the 

Stochastic Trajectory Optimization for Motion Planning (STOMP) planner. STOMP is 

a versatile tool that refines potential trajectories by introducing stochastic perturbations, 

enabling the planner to overcome challenges such as local minimum in the optimization 

landscape. In this system, the combination of MoveIt and STOMP is particularly 

effective for tasks like bin picking, where the manipulator must navigate through 

complex geometries and avoid collisions with multiple objects. By iteratively adjusting 

trajectories and incorporating collision avoidance constraints, STOMP ensures smooth 

and efficient motion planning but requires a lengthy computation process. The planner 

also considers additional factors like torque limits and energy optimization, ensuring 

that the manipulator operates within safe and efficient parameters. This robust planning 

mechanism allows the robot to handle cluttered environments reliably, guiding its end-

effector to the object’s pose with precision. The result is a well-optimized trajectory 

that ensures safe and effective interaction with the target object while minimizing risks 

of collisions as example in FIGURE 2-5. 

2.2.5  Simulation (Gazebo) 

  Before executing commands on a physical robot, the entire workflow is 

tested in Gazebo, a robotics simulation environment. In this phase, the calibrated robot 

model, the 3D sensor data, the reference point cloud, and the STOMP planner all 

operate virtually. By simulating the pick-and-place sequence first, researchers can 

verify the system’s performance and safety, reducing the risk of hardware damage and 

improving overall reliability as in FIGURE 2-6. 
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FIGURE 2-6  Gazebo Simulation for Testing 

 

 Taken together, these five components form a robust pipeline for automated bin 

picking, demonstrating how accurate calibration, reliable 3D modeling, effective 

perception, and carefully optimized motion planning can work in tandem to enable 

successful and efficient grasping of objects from disordered piles. This methodology 

translates directly into rescue robotics applications, where detecting, localizing, and 

safely manipulating items often under challenging conditions are key objectives. 

Similarly, Chen et al. [5] employed CAD-based pose estimation with multi-view image 

acquisition to improve success rates in cluttered environments. They employed two 

depth cameras to capture the 3D scene, followed by preprocessing steps such as down-

sampling, noise removal, and normal estimation. The segmented data was then 

processed using the k-NN method to identify clusters, after which the CAD model was 

matched to determine a coarse pose before applying ICP for refinement. While Kuo et 

al. [6] and Kanso et al. [7] further explored 3D depth imaging and extract the key point 

of the object in the scene, CAD modeling to compare with the feature of the object, and 

measurement data to enhance accuracy in detecting randomly placed objects critical 

capabilities that also transfer directly to rescue robots attempting to locate victims or 

key structural elements amidst rubble. 

 

2.3  3D Mapping, Localization, and Sensor Sensitivity 

 In rescue robotics, 3D mapping and localization are intertwined with 3D modeling, 

and both processes heavily depend on sensor quality. First, creating a 3D map of a 

disaster site involves gathering spatial data often through an RGB-D camera that 

captures depth information and color images in real time. This map not only helps the 

robot know where it is (localization) but also allows it to plan safe navigation paths 

through debris-filled or partially collapsed environments as example in FIGURE 2-7. 

 At the same time, 3D modeling builds on similar spatial data to construct a more 

detailed representation of individual objects or areas of interest. For instance, when a 

robot needs to manipulate or move specific debris, accurate 3D models provide the 

essential geometric information for tasks like grasp planning and collision avoidance. 
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However, the fidelity of these maps and models can be compromised if sensor 

sensitivity is poor. 

 

 
FIGURE 2-7  The 3D Map of Robocup Rescue Robot League 2023 

 

 Environmental factors such as low light, heavy dust, or partial occlusions can 

reduce the accuracy and reliability of depth measurements, leading to gaps or noise in 

the final 3D representation. If the sensor cannot consistently capture high-quality depth 

data, the robot risks basing its decisions on incomplete or distorted models. This can 

affect everything from path planning to object manipulation, increasing the likelihood 

of collisions or failed grasps. Robust calibration, sensor fusion (combining data from 

multiple sources), and algorithmic compensation (e.g., filtering or noise reduction 

techniques) are therefore crucial for maintaining high-quality 3D maps and models. By 

ensuring the sensor data is reliable, the robot can localize itself more accurately and 

execute complex tasks with greater success even under challenging, real-world 

conditions. 

 Accurate 3D mapping and localization are vital for rescue robots operating in 

dynamic, partially known disaster environments. Research has shown that low-cost 

RGB-D cameras can effectively generate real-time 3D maps [8][9] and enable 

accessible object modeling techniques, even for non-expert users. However, sensor 

sensitivity is affected by factors like lighting, occlusions, and dust can degrade depth 

data quality [14], thus reducing success rates in tasks such as bin picking or object 

manipulation. To overcome these challenges, robust sensor fusion and precise 

calibration become essential for maintaining reliable performance in uncertain 

conditions. Below is an overview of several common techniques used to create 3D maps 

or 3D models. 
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FIGURE 2-8  Structured Light Scanning Principle 

 

 
FIGURE 2-9  Stereo Vision Principle 

 

2.3.1  Structured Light Scanning 

  Structured light systems project a pattern (often infrared or visible light) onto 

a scene. As the pattern deforms over objects, onboard cameras capture the distortion. A 

computer then reconstructs a 3D surface from these deformations. This method can 

achieve high accuracy and resolution at short to medium ranges, making it popular for 
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tasks such as indoor scanning or precise object modeling as in FIGURE 2-8. However, 

performance may degrade in bright, outdoor environments and with reflective or 

transparent surfaces. 

2.3.2  Stereo Vision 

  Stereo vision uses two (or more) cameras placed at known distances apart (a 

“baseline”). Each camera captures a slightly different view of the same scene. By 

matching corresponding points between the images, the system computes depth via 

triangulation. This approach closely mimics human binocular vision and can provide 

good depth estimates in well-lit environments as in FIGURE 2-9. However, it can 

struggle with low-contrast or texture less surfaces, and calibration between the cameras 

must be precise for accurate results. 

2.3.3  RGB-D Sensors 

  RGB-D cameras combine conventional color (RGB) imaging with depth 

data, usually obtained via structured light or time-of-flight principles. These devices 

output both a color image and a corresponding depth map, enabling real-time 3D 

reconstructions without the need for elaborate multi-camera setups. They are widely 

used for robotic applications thanks to their simplicity and cost-effectiveness. However, 

depth accuracy can decline in bright outdoor settings or when confronted with reflective 

and transparent surfaces. 

2.3.4  Photogrammetry 

  Photogrammetry reconstructs 3D models from multiple 2D images taken at 

different angles. Advanced algorithms (Structure-from-Motion, Multi-View Stereo) 

estimate camera positions and generate a dense point cloud or mesh. Photogrammetry 

can yield highly detailed models, especially if the images are taken carefully with well-

textured scenes as in FIGURE 2-10. The main trade-off is computation time; 

reconstructing high-resolution models can be resource intensive. Lighting changes or 

texture less surfaces can also complicate matching between images. 

2.3.5  Time-of-Flight Cameras 

  Time-of-Flight (ToF) cameras emit light pulses (often infrared) and measure 

the round-trip time of these pulses to compute depth. The principle behind this involves 

emitting a light pulse towards an object and then detecting the light reflected back. The 

time taken for the round-trip is directly proportional to the distance, as light travels at a 

constant speed as shown in FIGURE 2-11. Using the formula (2-1) the camera 

calculates the depth information. 

 

 

(2-1) 

 

 

  Where d is the distance (m) 

   c  is the speed of light (m/s) 

   φ is phase offset (rad) 

         fmod is the modulation frequency. 

 This direct measurement can be faster than structured light in certain 

implementations, enabling robust real-time depth acquisition. While less susceptible to 

ambient lighting than structured light, some ToF sensors can still be affected by highly 

reflective or bright outdoor conditions. 

𝐝 =  (
𝐜

𝟐
) × (

∆𝛗

𝟐𝛑𝐟𝐦𝐨𝐝
) 
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2.3.6  LiDAR-Based Mapping (SLAM) 

  LiDAR (Light Detection and Ranging) sensors emit laser pulses and 

measure the time it takes for them to return after hitting an object as the technique time-

of-fight. Algorithms often combined under the term SLAM (Simultaneous Localization 

and Mapping) use these measurements to build highly accurate 2D or 3D maps and 

track the sensor’s position in real time. LiDAR excels in accuracy over larger distances 

and can work in a wide range of lighting conditions, including darkness. However, 

LiDAR units can be more expensive than RGB-D cameras, and complex environments 

with glass or highly reflective surfaces can introduce noise or partial scans. 

 

 
FIGURE 2-10  Example of Photogrammetry 

 

 
FIGURE 2-11  Overview of Continuous Wave Time of Flight Sensor Technology 
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2.4  ICP (Iterative Closest Point) and Alignment Algorithms 

 In rescue robotics and other fields requiring high precision, the Iterative Closest 

Point (ICP) algorithm has become a cornerstone for aligning 3D point clouds, enabling 

accurate object pose estimation. Its importance stems from the need to match sensor 

data, such as scans of an environment or object, with pre-existing models or other 

sensor readings. This process is critical for enabling tasks like object manipulation, 

navigation, or detailed mapping, especially in dynamic and unpredictable 

environments. The ICP algorithm works by iteratively refining the alignment between 

two sets of points: a source point cloud, which could be data captured from a sensor, 

and a target point cloud, often a pre-scanned 3 D model as shown the principal in 

FIGURE 2-12. The alignment process begins with an initial transformation estimate 

that may be derived from methods such as feature matching or Principal Component 

Analysis (PCA). This initial guess, while often coarse, serves as a starting point for the 

algorithm to refine the pose further. 

 The first step in ICP involves establishing correspondences between points in the 

source and target clouds. For each point in the source cloud, the closest point in the 

target cloud is identified. This correspondence assumes that the nearest point represents 

the same feature or part of the object, a critical but sometimes challenging assumption 

when the surfaces of the two-point clouds are noisy or sparsely populated. Once 

correspondence is established, the algorithm computes a rigid transformation, 

consisting of a rotation and translation, that minimizes the distance between the 

matched points. This transformation is often calculated using mathematical techniques 

like Singular Value Decomposition (SVD) or linear least-squares optimization [10]. 

After calculating the transformation, it is applied to the source point cloud to bring it 

closer to alignment with the target. The process then repeats iteratively, refining the 

alignment in each step, until the change between successive iterations becomes 

negligible, as measured by a predefined metric such as the root mean square error 

(RMSE) of point distances. 

 

 
FIGURE 2-12  The Explanation of Method to Use in Iterative Closest Point 
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2.4.1  Point-to-Point ICP 

  The point-to-point ICP variant is the simplest and most computationally 

efficient form of the algorithm. It focuses on minimizing the Euclidean distance 

between corresponding points in two-point clouds: the source (e.g., the scanned data) 

and the target (e.g., a pre-existing model). In this method, each point in the source cloud 

is matched to the closest point in the target cloud, and a rigid transformation composed 

of rotation and translation is computed to reduce the overall distance between these 

correspondences. This method works well for datasets with sparse or distinct points, 

where the features are easily identifiable and separated. It is often used as an initial 

alignment step due to its computational simplicity, enabling quick rough alignment. 

However, its limitations become evident when applied to smooth surfaces. On such 

surfaces, the nearest point may not accurately represent the true correspondence, 

leading to misalignments. Thus, while point-to-point ICP is computationally efficient, 

it is best suited for datasets with clearly defined features and requires a good initial 

alignment to avoid errors. 

2.4.2  Point-to-Plane ICP 

  The point-to-plane ICP variant builds on the point-to-point approach by 

incorporating surface normals into the alignment process. Instead of minimizing the 

Euclidean distance between corresponding points, it minimizes the distance between a 

point in the source cloud and the tangent plane at the corresponding point in the target 

cloud. By considering the surface geometry, point-to-plane ICP achieves more accurate 

and stable alignment, especially for smooth or planar surfaces. This variant is 

particularly effective for aligning large datasets with well-defined surface structures, 

such as walls, floors, or mechanical components. The inclusion of surface normals 

ensures that the algorithm accounts for the geometry of the object, leading to faster 

convergence and greater accuracy. However, the added complexity of computing and 

using surface normals makes this method more computationally intensive than point-

to-point ICP. Additionally, it is less effective for sparse datasets or point clouds without 

clear surface definitions. Point-to-plane ICP is ideal for applications where planar 

features dominate, and precision is critical. 

2.4.3  Color Registration ICP 

  The color registration ICP variant extends the algorithm beyond geometric 

alignment by incorporating color as a matching feature. In this method, point 

correspondences are established not only based on spatial proximity but also on 

similarity in RGB values as in FIGURE 2-13. This approach leverages additional 

information provided by color to refine alignments, making it particularly effective in 

scenarios where geometric features alone are insufficient or ambiguous. Color ICP is 

highly useful in environments with mixed textures or complex patterns, where color 

provides context that enhances the reliability of correspondences. For example, in 

scenes with repetitive geometric patterns, the color data can help differentiate regions 

that might otherwise appear identical. While this variant significantly improves 

alignment accuracy in such cases, it comes at the cost of increased computational 

demand. Additionally, the effectiveness of color ICP relies on the quality of the color 

data; noisy or inconsistent lighting conditions can negatively impact performance. 
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FIGURE 2-13  The Example of the Color Registration ICP 

 

 The differences between these ICP variants highlight their unique strengths and 

weaknesses [11]. Point-to-point ICP is computationally less intensive and ideal for 

scenarios where point cloud features are sparse and discrete. Point-to-plane ICP, while 

more computationally demanding, excels in aligning smooth or continuous surfaces by 

leveraging surface normals. Meanwhile, color ICP adds another dimension of data, 

incorporating color as a feature, which increases the computational cost but also 

significantly enhances accuracy in multi-modal environments. Ultimately, the success 

of ICP in rescue robotics depends on its ability to minimize errors during alignment, as 

even small inaccuracies can affect mission outcomes. By reducing alignment errors and 

ensuring robust pose estimation, ICP enables robots to perform critical tasks like object 

manipulation or navigation with precision and reliability. This capability underscores 

its role as a fundamental tool in environments where precise alignment can mean the 

difference between mission success and failure 

 

2.5  Impact Sensing 

 Many rescues robotic arms must be lightweight and maneuverable, sometimes 

featuring flexible or prismatic joints to handle tight or cluttered spaces [15]. Research 

into flexible manipulator control addresses challenges including vibration control, 

inverse dynamics calculations, and maintaining stability under external disturbances. 

These factors become critical in disaster settings where collisions with debris are 

frequent. Additionally, impact sensing plays a pivotal role in detecting contact with 

objects or the environment, enabling safer and more adaptive responses. In [12] 

explored the time series classification of IMU data to determine impact points, which 

can be leveraged for immediate motion adjustments and reduced damage risks to both 

the robot and its surroundings. 

 Detecting impact in flexible manipulator systems often involves instrumenting the 

robot arm with inertial sensors such as accelerometers and gyroscopes collectively 

known as IMUs (Inertial Measurement Units) FIGURE 2-14. When the manipulator 

contacts an external object or experiences a sudden jolt (e.g., hitting debris), the IMU 

data displays distinctive patterns: spikes in acceleration, abrupt changes in angular 

velocity, or a combination of both. By classifying these time series signals, it becomes 

possible to precisely pinpoint when and where the impact occurred. 
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FIGURE 2-14  IMU Motion Sensor 

 

 
FIGURE 2-15  The Impact Detection in IMU 

 

 Once an impact is detected as see in FIGURE 2-15, the sensor data serves multiple 

purposes. First, the system can trigger immediate motion adjustments such as halting 

the current motion plan, retracting the arm, or switching to a compliant control mode 

that reduces force exerted on the environment. This responsiveness helps minimize 

potential damage to the robot itself, as well as to any fragile surroundings or trapped 

victims in rescue scenarios. Second, the recorded impact data can feed into higher-level 

algorithms for fault detection or anomaly recognition. These algorithms can adapt the 

robot’s control strategy over time, improving its resilience to unstructured 

environments and boosting the overall safety and efficiency of the rescue operation. 



 

 

 

 

CHAPTER 3  
METHODOLOGY 

 

In this thesis, it will show the procedure and the process of the object interaction 

system for rescue robotics which can be separate into 3 main sections. First, the 

calibration section will describe how to calibrate each module. Second, the pose 

estimation section will explain how to prepare data for the process and process. Lastly, 

the interactions section which to interact with the object as in FIGURE 3-1. 

 

 
FIGURE 3-1  The Overview of The Object Interaction System 
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3.1  Calibration section 

 There are three steps of calibration to make sure that the system will operate 

precisely and accurately. The calibration consists of camera calibration, manipulator 

calibration, and hand-eye calibration. Each calibration ensures that every subsection in 

the system provides the appropriate tolerance. 

3.1.1  The camera calibration, it's crucial to ensure precise parameter tuning as the 

transformation matrix is sensitive to camera settings. Below is a step-by-step expanded 

explanation of the calibration process: 

3.1.1.1  Preparation and Setup, start by gathering all necessary equipment, 

including the L515 LiDAR camera and industrial-grade chessboards as FIGURE 3-2. 

Ensure the chessboard is well-lit and placed on a stable, flat surface. The camera should 

be securely mounted and positioned to capture the entire chessboard. 

 

 
FIGURE 3-2  Zivid 7x8-30mm and calib.io 9x12-30mm 

 

3.1.1.2  Intrinsic Calibration and Lens Distortion Correction, this step 

involves calibrating the camera’s intrinsic parameters, which include focal lengths, 

optical center, and lens distortion coefficients. Using calibration software (OpenCV), 

capture multiple images of the chessboard from different angles and distances. Detect 

and extract the chessboard corners in each image. The software uses these points to 

compute the camera matrix Equation (3-1), where 𝑓𝑥 , 𝑓𝑦 are the focal lengths, and 

𝑐𝑥, 𝑐𝑦 are the optical centers.  

 

 

(3-1) 

 

 

   Where 𝑓𝑥 is focal lengths in x axis 

    𝑓𝑦 is focal lengths in y axis 

    𝑐𝑥 is the optical center coordinates in x axis 

    𝑐𝑦 is the optical center coordinates in y axis 

 

 Which will be used in transmission data between 3D point into the camera's 

coordinate system onto a 2D image plane or from 2D image plane into 3D point as the 

Equation 3-2) 

 

𝑲 =  [
𝒇𝒙 𝟎 𝒄𝒙

𝟎 𝒇𝒚 𝒄𝒚

𝟎 𝟎 𝟏

]  

 



 

 

 

20 

 

3-2) 

 

   Where 𝒔 is the scaling factor 

    𝒖 is horizontal pixel coordinate in the image 

    𝒗 is vertical pixel coordinate in the image 

    𝑲 is the intrinsic parameters 

    𝑿 is x axis in the 3D coordinates in the camera's frame (m) 

    𝒀 is y axis in the 3D coordinates in the camera's frame (m) 

    𝒁 is z axis in the 3D coordinates in the camera's frame (m) 

 

 Next, lens distortion correction, Analyze the captured images for radial and 

tangential distortion. These distortions often manifest as barrel or pincushion effects, 

where straight lines appear curved. The software calculates distortion coefficients 

(OpenCV), which are used to undistort the images, ensuring that measurements are 

accurate and free from distortion. 

3.1.1.3  Post-Calibration Testing, conduct a series of tests to ensure the 

calibration process is effective. This includes capturing real-world scenes and analyzing 

the accuracy of point cloud data and object positioning. If inaccuracies persist, refine 

the calibration by increasing the number and diversity of chessboard images or 

adjusting the calibration setup. 

3.1.2  The manipulator calibration process, which ensures accurate end-effector 

positioning and orientation, several critical steps are followed: 

3.1.2.1  Preparation and Setup, begin by preparing the necessary tools, 

including a protractor and gyroscope sensor, which are essential for measuring joint 

angles accurately. Ensure that the manipulator is in its home position and all joints are 

accessible for measurement and adjustments. Confirm that both incremental and 

absolute encoders are functional to capture accurate feedback. 

3.1.2.2  Understanding and Establishing DH Parameters, The Denavit-

Hartenberg (DH) parameters, which define the geometry of the manipulator, are 

established. These parameters include link lengths, link twists, joint angles, and offsets, 

forming the foundation for understanding joint movements. A baseline is created by 

comparing the theoretical DH parameters with the physical design of the manipulator 

to identify any initial discrepancies due to manufacturing or assembly tolerances. In 

this thesis, the Modified Denavit-Hartenberg (MDH) method is utilized. There are two 

widely accepted techniques for representing robotic kinematics: the Classical Denavit-

Hartenberg (DH) method and the Modified Denavit-Hartenberg (MDH) method. While 

both methods serve the same purpose describing the spatial relationship between 

consecutive joints of a robotic manipulator their mathematical formulation differs. 

3.1.2.3  Sensor Feedback Analysis, Analyze feedback from the incremental 

and absolute encoders. Incremental encoders provide relative motion data, while 

absolute encoders offer the exact position of each joint. Identify shifts in feedback data 

that may result from factors such as gear backlash or slippage, which can introduce 

inaccuracies in joint positioning. This also includes gear ratio compensation which will 

adjust the encoder feedback to account for the manipulator’s gear ratio. This step 

ensures that the actual joint motion is accurately reflected in the encoder readings. 

𝒔 ∙ [
𝒖
𝒗
𝟏

] = 𝑲 ∙ [
𝑿
𝒀
𝒁

] 
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3.1.2.4  Angle Measurement and Adjustment, Use the protractor to manually 

measure the angle of each joint. This provides a reference to validate the encoder 

readings. Complement manual measurements with data from the gyroscope sensor, 

which captures angular velocities and orientations with high precision. Compare the 

encoder feedback with the measured values from the protractor and gyroscope to detect 

and quantify any deviations. Based on the observed discrepancies, adjust the encoder 

readings by applying compensation values. This involves fine-tuning the manipulator’s 

control algorithms to correct for misalignments or errors in joint motion. 

3.1.2.5  Validation and Testing, perform static validation by moving the 

manipulator to predefined positions and re-measuring joint angles to ensure that the 

calibrated encoder readings align with the actual positions. Conduct dynamic tests, 

where the manipulator executes various tasks to verify that the end-effector reaches 

target positions and orientations accurately under operational conditions. 

3.1.3  The manipulator calibration process, which aligns the RGBD camera (L515) 

with the manipulator’s end-effector, the following steps are performed: 

 

 
FIGURE 3-3  The Relation of Each Coordinate of The Manipulator 

 

 
FIGURE 3-4  ArUco 10x14-21.5mm, DICT_5X5_250 

 

3.1.3.1  Preparation and Setup, start by securely mounting the RGBD camera 

on the manipulator’s gripper. This configuration ensures the camera moves with the 

end-effector during operation. Use a high-precision ArUco marker board as FIGURE 

3-4 for calibration. Position the marker board in a well-lit and stable environment within 

the camera’s field of view. Additionally, the reason for using a 1 0 x1 4  grid ArUco 

marker is to increase the precision of the coordinates that are provided by the board 
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since the noise from the image processing is eliminated using the average of a greater 

number of ArUco. 

3.1.3.2  Capturing Manipulator Poses and Image Processing with ArUco 

Markers, Moving the manipulator to various positions and orientations, ensuring the 

camera captures the ArUco marker from multiple angles. For each pose, record the 

transformation matrix that describes the relationship between the end-effector and the 

manipulator’s base. This matrix is derived using forward kinematics. At the same time, 

detect the ArUco markers in the camera's image. These markers provide precise 

coordinates of the board relative to the camera’s frame. Extract the position and 

orientation of the ArUco marker using image processing techniques. This information 

serves as a reference for aligning the camera’s frame with the manipulator. 

3.1.3.3  Calculating the Hand-Eye Transformation, Combine the recorded 

manipulator poses and the camera’s marker detections to compute the hand-eye 

transformation matrix. This matrix represents the fixed link between the end-effector 

and the camera. It translates and rotates the camera’s coordinate system into alignment 

with the manipulator’s end-effector frame. Then use forward kinematics to ensure the 

calculated hand-eye transformation is consistent with the manipulator’s movement. 

Validate that the transformation matrix remains stable across all recorded poses, 

ensuring precise alignment regardless of the manipulator's orientation as in FIGURE 

3-3. 

3.1.3.4  Validation and Testing, Test the calibration by using the camera to 

detect the ArUco marker from various positions and verifying that the calculated 

marker coordinates match the known ground truth. Simulate operations where the 

camera and manipulator work together, ensuring that the end-effector reaches target 

positions accurately when guided by the camera. 

 Calibration is a foundational process in robotic systems, ensuring precision, 

accuracy, and seamless integration between visual and mechanical components. 

Camera calibration corrects intrinsic parameters, such as focal lengths and lens 

distortions, to produce distortion-free depth and RGB data, which are critical for 

accurate object recognition and pose estimation. Without this step, errors in the 

transformation matrix could compromise downstream tasks. Manipulator calibration 

refines joint positions and end-effector orientations by compensating for feedback 

discrepancies, such as gear backlash or encoder inaccuracies, using Denavit-Hartenberg 

parameters. This ensures precise motion control and alignment with intended 

trajectories, which is essential for reliable task execution. Hand-eye calibration bridges 

the gap between visual perception and mechanical action by establishing a fixed 

transformation between the camera and the manipulator’s end-effector. This alignment 

ensures that detected objects correspond to actionable coordinates, enabling accurate 

interactions like grasping and placement. Together, these calibrations enhance the 

system’s accuracy, repeatability, and robustness, enabling effective operation in 

dynamic environments and making calibration a critical determinant of overall system 

performance. 

 

3.2  Pose Estimation section 

 The pose estimation process aims to determine the position and orientation of the 

target object [6][7]. The process consists of multiple steps beginning with gathering the 

reference 3D model and a labelled 2D dataset to train the YOLOv8 2D Detection, then 
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using the result of the detection to create the target object point cloud. Afterward, we 

use multi-technique Iterative Closest Point (ICP) with the reference 3D model to get 

pose reference from camera. The transformation of the object is calculated back to the 

manipulator base link which is the root of the arm reference. 

 

 
FIGURE 3-5  Diagram of 2D and 3D Dataset Collection 

 

3.2.1  3D Modeling 

  The 3D modeling process begins with capturing RGB and depth images of 

the target object using the Intel RealSense L515 camera. Multi-ArUco markers are 

strategically placed in the scene to serve as spatial references, facilitating the generation 

of accurate odometry for the camera [8]. This odometry is crucial in determining the 

camera's position and orientation relative to the object during the scanning process. By 

combining the RGB data with depth information, the system creates a comprehensive 

spatial representation of the object as shown in FIGURE 3-5. 

 Once the images are captured, they are converted into point cloud data. This 

transformation involves mapping each pixel in the RGB image to a 3D point in space 

[9], utilizing depth information and the camera's intrinsic parameters. The ArUco 

markers enhance precision during this process by providing reliable reference points. 
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The resulting point cloud represents the object and its surroundings, forming the raw 

data for further processing. 

 To construct a cohesive 3D model, point clouds from multiple viewpoints are 

mapped and aligned. This alignment is achieved using the Iterative Closest Point (ICP) 

algorithm, which minimizes discrepancies between overlapping point clouds by 

iteratively refining their alignment. The camera's odometry data ensures an accurate 

initial alignment, and the ICP process enhances the model's precision by reducing Root 

Mean Square Error (RMSE) between the point clouds. The system removes the 

background by calculating a reference plane using the ArUco markers. Points below 

this plane, representing the ground or other flat surfaces, are cropped out. This step 

results in a cleaner dataset, free from unnecessary information, which streamlines 

subsequent processes. Further refinement involves removing noise and optimizing the 

point cloud through statistical outlier removal and voxel downsampling. Statistical 

outlier removal filters out points that deviate significantly from their local 

neighborhoods, while voxel downsampling reduces the resolution by grouping nearby 

points into voxels and replacing them with representative points. These techniques 

improve the quality of the point cloud and reduce computational complexity.  

 Finally, the processed point clouds from different viewpoints are merged to create 

a detailed reference model of the object. This unified model, free of noise and irrelevant 

data, serves as the baseline for object recognition, pose estimation, and robotic 

manipulation tasks. Each step in this process not only enhances the fidelity of the model 

but also ensures robustness and efficiency, making it ideal for complex robotic 

applications. 

3.2.2  YOLOv8 2D Detection 

  The process begins with the collection of a comprehensive dataset to train 

the AI model. RGB images are captured using the Intel RealSense L515  camera, with 

each image carefully labeled to provide ground truth data. This dataset serves as the 

foundation for training, ensuring the model can recognize and segment objects 

accurately. However, to enhance its robustness and adaptability, the dataset is 

augmented with synthetic data. This synthetic dataset is created through various image 

augmentation techniques, including geometric transformations, such as rotation and 

scaling, color adjustments to simulate different lighting conditions, the addition of noise 

and blurring to mimic sensor imperfections, and cropping to emphasize specific object 

regions. These augmentations significantly expand the dataset, exposing the model to 

diverse real-world scenarios as shown in FIGURE 3-6. 

 The captured and augmented images are then preprocessed using the output from 

the 3 D modeling step. This involves mapping 3 D object data into 2 D space and 

cropping each image to focus solely on the object region. By removing irrelevant 

background elements and adding diverse backgrounds to the cropped images, the 

model’s robustness to environmental variations is further enhanced. This preprocessing 

ensures that the model concentrates on key object features while eliminating noise and 

distractions. 
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FIGURE 3-6  Diagram of Creating Synthetic Dataset 

 

 For the purposes of this study, the focus is narrowed to five key object classes 

relevant to dexterity tasks in a competition setting: Linear Inspection, Linear Insert, 

Omni Inspection, Omni Insert, and Omni Emergency Button. Each class is represented 

by an extensive set of augmented and labeled images. While the competition typically 

involves up to 5 0  object classes, this focused approach ensures the system’s high 

accuracy and reliability for these critical tasks. 

 Once the YOLOv8  model is trained, it is deployed to detect and segment objects 

in real-time. The model identifies the target object in a given scene and isolates it from 
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the background, providing a bounding box or mask for the detected object. The detected 

region is then combined with depth information captured by the L515 camera to create 

a target point cloud. This point cloud represents only the task object, with all irrelevant 

environmental elements removed. 

 This entire process of detection and point cloud generation ensures a clean and 

accurate 3D representation of the target object, which is essential for subsequent 

processes like pose estimation and robotic manipulation. The combination of a robust 

training dataset, diverse augmentations, and precise detection mechanisms ensures the 

system performs reliably under varying conditions, making it well-suited for complex 

dexterity tasks in competitive and real-world scenarios. 

3.2.3  Multi-Technique Iterative Closest Point 

  To find the position and orientation of the target object to the camera, we 

use iterative closest point to align the relative of the target point cloud with the reference 

point cloud which assigned into the camera frame. In the process of iterative closest 

point, it has several types of process but in this system use multiple type together 

including point-to-point ICP for quick initial alignment, point-to-plane ICP for stable 

surface matching, and colored point cloud registration ICP [10][11] for color-based 

refinement. Since each technique uses different features of the point cloud to reach the 

lowest RMSE, combine each type by using the process respectively and select the lower 

RMSE. Furthermore, the parameter of the ICP process can affect the performance 

potentially causing the result to get stuck in local minimum. To avoid this problem, the 

multi-scale ICP takes place to calculate multi scale by using different voxel 

downsampling sizes to extract the features from different scale perspectives with each 

ICP technique type. 

 

3.3  Interaction section 

 The interaction system begins with obtaining the object's dimensions, position, and 

orientation derived from prior processing stages. These parameters are essential for 

planning and controlling the manipulator arm’s trajectory to achieve specific tasks. For 

example, the system can handle tasks like inspecting symbols inside five tubes or 

pressing emergency buttons positioned at varying angles as in FIGURE 3-7. 

 Path Planning and Kinematics The TRAC-IK kinematic solver is employed to 

calculate the inverse kinematics of the manipulator arm, providing the precise joint 

positions needed to execute movements. To ensure safety and efficiency, the TRAC-

IK solver is integrated with the MoveIt Stomp planner, which generates collision-free 

trajectories. For instance, when inspecting a tube, the arm's trajectory is planned to 

achieve an optimal end-effector angle for viewing symbols while avoiding obstructions.  

Similarly, when pressing emergency buttons, predefined "via points" help guide the 

gripper to align correctly with buttons placed at various angles. 

 Impact Detection The manipulator arm incorporates an IMU sensor integrated with 

an RGB-D camera (L515) mounted on the gripper. The IMU monitors XYZ-axis 

accelerations to detect sudden changes, signaling impacts during tasks [12]. For 

instance, when the gripper contacts an emergency button, the impact is confirmed by a 

noticeable acceleration change, ensuring task completion is verified in real-time. 
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FIGURE 3-7  Diagram of Object Interaction 
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3.3.1  Gathering Information 

  Process Pipeline for Object Interaction, the pipeline begins with capturing 

the object's image. Two strategies are employed, Predefined Position Scanning: The 

arm moves to a preset position and scans for the object, Coarse Localization: Utilizing 

the robot's odometry and the surroundings, the arm determines a rough object’s location 

and orientation. In scenarios like the RoboCup Rescue competition, task zones (e.g., 

control panels) are predefined, enabling the robot to approach these zones 

autonomously. 

 Once in the task zone, image processing refines the object’s reference position 

relative to the robot. The optimal end-effector pose is calculated to capture the object 

within the image frame [13]. For example, the pose is adjusted to ensure the shortest, 

collision-free path for capturing an image of a control panel button.  

3.3.2  Object Localization 

  By captured images undergo advanced processing using the YOLO AI 

model for object detection, segmentation, and localization. Once identified, the system 

generates a refined point cloud of the scene to isolate the target object from its 

surroundings. A combination of Iterative Closest Point (ICP) techniques point-to-point 

ICP, point-to-plane ICP, and color registration ensures precise alignment of the object’s 

point cloud to the manipulator’s base link. This multi-technique approach minimizes 

Root Mean Square Error (RMSE) during alignment and ensures accuracy. 

3.3.3  Object Interaction 

  When interacting with objects, the system was evaluated using two main 

types of tasks inspection and emergency button pressing. 

3.3.3.1   Inspection Tasks: The robotic arm aligns its position to accurately 

capture visual details, such as symbols inside tubes. Multi-angle captures ensure 

comprehensive inspection. 

3.3.3.2  Emergency Button Tasks: The arm aligns and presses buttons while 

the arm verifies successful interaction using real-time impact detection. Sensors 

monitor contact force to confirm task completion. 

 The diagram in FIGURE 3-8 illustrates an integrated robotic system leveraging 

TRAC-IK for kinematic solving, STOMP for planning, and real-time velocity 

controllers within MoveIt to achieve high-precision operations in a variety of scenarios. 

Starting from the top of the process, the system identifies an end-effector goal by 

capturing a 3D view of the environment, which involves detailed scene reconstruction 

with point clouds. This enables accurate identification of object positions and potential 

paths. The TRAC-IK solver efficiently computes inverse kinematics under constraints, 

such as avoiding joint limits or obstacles, while STOMP (Stochastic Trajectory 

Optimization for Motion Planning) refines the trajectory for smooth execution. This is 

crucial in applications like symbol inspection or button pressing, where even slight 

deviations could lead to errors. By relying on a velocity controller, the system ensures 

the robotic arm executes the planned motions smoothly and accurately. Incorporating 

scene visualization and real-time impact monitoring enhances the adaptability of the 

system. The hardware interface communicates the refined trajectories to low-level 

controllers, which interact with the actuators to perform the tasks. The hardware, 

including robotic arms and manipulators, is capable of operating in constrained and 

complex terrains, as highlighted in the RoboCupRescue competition trials. 
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FIGURE 3-8  Hardware Communication System Process 



 

 

 

 

CHAPTER 4  
EXPERIMENTAL RESULTS 

 

 In this chapter, we describe the experimental methodology and present the resulting 

data, together with an evaluation of the proposed method’s performance and accuracy. 

The chapter is divided into the following sections. 

 4.1 Experimental Setup and Competition Framework 

 4.2 Tasks and Scoring 

 4.3 Performance Evaluation and Observations 

 

 
FIGURE 4-1  Bird-Eye-View of The Robocup Rescue 2024 Area in Netherlands 

 

4.1  Experimental Setup and Competition Framework 

 The RoboCup Rescue 2024 League, which took place in Eindhoven, Netherlands 

FIGURE 4-1, was a prominent platform for evaluating state-of-the-art robotic systems 

under simulated disaster conditions. This annual competition drew teams from across 

the globe, representing a convergence of academic and industry leaders in robotics. The 

league had been established over two decades ago, inspired by the need for robotic 

systems capable of supporting emergency responders during hazardous missions. The 

event was held in an advanced arena specifically designed to emulate real-world urban 

disaster scenarios, allowing researchers and practitioners alike to rigorously test their 

robots against a wide range of challenges. 

 Over 25 teams from diverse countries participated in the competition, as shown in 

TABLE 4-1, showcasing robotic systems that ranged from compact models to advanced 

manipulators weighing over 70 kg. 
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TABLE 4-1  Qualified Teams for RoboCup Rescue 2024 League 

No. Country Team Name Organization 

1 
Austria Team Dynamics University of Applied Sciences 

Upper 

2 Bangladesh BRACU ALTER BRAC University 

3 
China Creative Town Hefei Youth Science and 

Technology 

4 
China NuBot National University of Defense 

Technology 

5 
China RERA Beijing Information Science & 

Technology 

6 
COTE 

D'IVOIRE 

Alp Robotics Alpha Space Robotics 

7 
France RMS ISTY: Institut des Sciences et 

Techniques 

8 Germany ALeRT MASCOR - FH Aachen 

9 
Germany AutonOHM Technische Hochschule 

Nürnberg 

10 
Germany CJT-Robotics Christoph-Jacob-Treu 

Gymnasium 

11 
Germany Hector Darmstadt Technical University of 

Darmstadt 

12 
Japan NITRo Nagoya Institute of 

Technology 

13 Japan Quix Tohoku University 

14 Japan SHINOBI Kyoto Univ. and OIT 

15 Mexico Ghost Robots Tecnológico de Monterrey 

16 
Mexico Robotec Instituto Tecnológico y de 

Estudios 

17 Mexico UP Robotics Universidad Panamericana 

18 South Korea ROBIT Kwangwoon UNV(Seoul) 

19 
Switzerland Solidus Technical School of Applied 

Sciences 

20 
Thailand BART LAB Rescue 

Robotics 

Mahidol University 

21 
Thailand iRAP_ROBOT King Mongkut's University of 

Technology North Bangkok 

22 Turkey ITU RAKE Istanbul Technical University 

23 USA ATR Kent Kent State University 

24 USA BSM Robotics Benilde-St. Margaret's 

25 
USA RatSBU Robotics at Stony Brook 

University 
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 In addition to the field trials at the competition, extensive laboratory experiments 

were carried out, enabling teams to refine their systems in a controlled environment. 

Robotic platforms were methodically tested for precision, efficiency, and resilience, 

crucial factors in task missions. Once validated under lab conditions, competition 

conditions, these technologies were subsequently deployed in real-world experiments, 

where they operated in real building collapse sites and were put to use in authentic 

rescue operations. This multi-layered approach compassed rigorous lab testing, 

structured field trials, and on the ground real-world evaluations ensured that the 

RoboCup Rescue League not only advanced research in robotics but also made tangible 

contributions to emergency response capabilities worldwide. In previous rescue robot 

competitions, the iRAP Robot relied solely on manual manipulator control using 

inverse kinematics. This year, however, marked a significant leap forward, as the team 

focused on developing a more advanced system to contend for best-in-class dexterity. 

4.1.1  Competition Arena Setup 

  The venue includes ten concurrent test lanes configured to challenge robots 

in multiple operational aspects such as mobility, dexterity, and autonomous mapping. 

The competition prioritizes inclusivity, allowing teams to schedule their own trials 

within the available time slots. This approach ensures each team can rigorously test 

their systems under various conditions. The arena incorporates meticulously designed 

terrains and obstacles that simulate real-world disaster environments. These include: 

4.1.1.1   Maneuvering Lanes (MAN): These include continuous ramps, 

crossing ramps, and K-rails, tailored to test a robot's bi-directional navigation 

capabilities and situational awareness. These lanes provide incremental challenges, 

ranging from flat terrains for basic navigation to sloped ramps requiring advanced 

maneuvering skills. 

4.1.1.2   Mobility Obstacles (MOB): Featuring elements such as sand, 

gravel, stairs, and pallet hurdles, these obstacles simulate complex terrains. The 

difficulty is adjustable, progressing from simpler tasks to scenarios that test the robot's 

control systems under extreme conditions, such as debris-laden stairs. 

4.1.1.3   Dexterity Zones (DEX): These tasks are designed to evaluate the 

precision, reach, and control of robotic manipulators. These zones incorporate tasks 

such as button pressing, valve turning, and key insertion, challenging the robot's ability 

to perform intricate operations with accuracy. This thesis will assess the performance 

of robotic systems in these dexterity zones, focusing on their ability to execute precise 

manipulations under various constraints and conditions. There are 9 dexterity tasks  

consist of linear-inspection, omni-inspection, linear-touch, omni-touch, linear-insert, 

omni-insert, close valves, emergency push button, and key-insert  

4.1.1.4   Exploration and Mapping Areas (EXP): Labyrinthine mazes, 

elevated paths, and mapping fiducials are designed to evaluate the robot's ability to 

autonomously navigate and generate accurate 2D/3D maps. Autonomous behaviors in 

these areas are rewarded with higher scores due to their complexity and operational 

significance. 

 Each test lane is designed to provide statistically significant performance data 

through repetitive trials. Each trial spans 30 minutes, including 20 minutes of operation 

and 5 minutes each for setup and exit. Robots are scored on their ability to complete 

tasks, with multipliers based on autonomy levels, Teleoperated tasks earn a baseline 
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score, Autonomous tasks are rewarded with a 4x multiplier, reflecting their operational 

complexity. Tasks completed under degraded communication conditions earn 

additional multipliers, mimicking real-world challenges like signal interference in 

collapsed structure 

 Each task is aligned with ASTM International Standards for Urban Search and 

Rescue Robots, ensuring the relevance of competition outcomes to real-world disaster 

scenarios. By encouraging teams to proctor one another, the league fosters a spirit of 

shared learning of testing methodologies. Teams can reset their robots during trials with 

a minor penalty, enabling iterative improvements during the competition. The RoboCup 

Rescue 2024 league is not just a competition but a global collaborative effort to advance 

robotics for life-saving applications. Its carefully structured framework, including 

diverse test maps, scoring multipliers, and inclusivity, ensures a comprehensive 

assessment of robotic systems while pushing the boundaries of innovation 

4.1.2  Laboratory Experiment 

  In the laboratory experiment, the system was evaluated by performing a 

linear-inspection task, where the robotic manipulator autonomously initiated from a 

home position to detect and execute the dexterity task from various starting angles. The 

experiment collected several key performance metrics, including detection success rate, 

sub-mission completion status, processing times for 3D preprocessing and 3D ICP 

procedures, the operation time required for each sub-mission, and the RMSE of the ICP 

algorithm. 

4.1.3  Field Experiment 

  The RoboCup Rescue Robot League served as an operational test. Since the 

competition integrated multiple dexterity tasks designed to simulate authentic rescue 

conditions but in this thesis are focused on linear-inspection, omni-inspection, and 

emergency push button., it provided a robust setting to evaluate the performance of the 

autonomous manipulator system in high-stakes scenarios. By leveraging the league’s 

comprehensive challenges and scoring protocols, the system’s reliability and 

adaptability were thoroughly assessed under conditions closely approximating real-

world urban disaster responses. 

4.1.4  Real-World Experiment 

  On March 28, 2025, an 8.2 magnitude earthquake struck central Myanmar, 

causing intense tremors that reached Bangkok, Thailand. One of the most severe 

consequences was the collapse of a 30-storey building under construction on 

Kamphaeng Phet Road, close to the Chatuchak Weekend Market. In the aftermath of 

this incident, members of the iRAP robotics club volunteered to support local rescue 

teams, bringing advanced 3D mapping technology to assist with site assessment. By 

generating comprehensive maps of the collapsed structure and its surroundings, iRAP 

helped rescuers and engineers evaluate structural stability and minimize the risk of 

additional collapses. However, although the club’s team had been researching an 

autonomous manipulator arm for such rescue scenarios, it was not feasible to deploy in 

this real-world environment. The tight confined and unpredictable conditions of the 

disaster site underscored the current limitations of robotic arms, which still require 

significant development before they can reliably operate alongside human responders 

in hazardous conditions. This real-world experience highlighted the gap between 

laboratory and field test, emphasizing the need for continued research and refinement 

of autonomous technologies to ensure they can effectively support future rescue efforts. 
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FIGURE 4-2  The Illustration of Dexterity Tasks That Operate Automatically 

 

4.2  Tasks and Scoring 

Guided by the objective of developing a system capable of efficiently detecting and 

interacting with objects in rescue environments, the research followed a three-tiered 

experimental approach. First, controlled laboratory experiments were conducted to 

refine the robot’s core functionalities, focusing on object identification, localization, 

and manipulation under predictable conditions. Here, tasks such as linear inspection 

were systematically tested to measure detection accuracy and maneuverability of 

manipulator arm.  
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Building on insights from the lab, the second phase involved participation in a field 

experiment at the RoboCup Rescue competition. This environment exposed the robot 

to complex terrains and diverse dexterity tasks such as linear inspection, omni-

inspection, and most notably emergency push-button pressing (E-stop) mirroring high-

pressure conditions often encountered in real-world disasters as shown in FIGURE 

4-2. The rigorous demands of the competition allowed for an in-depth assessment of 

the robot’s ability to adapt to unforeseen challenges while maintaining precision in 

object handling. 

 

Where Linear-Inspection: Focuses on straight-line manipulation path. 

 Omni-Inspection: Involves more complex, multi-angle interactions. 

    Push-Button tasks: Measure precision under tight tolerances 

 

Lastly, although a real building collapse scenario occurred due to a regional 

earthquake, the conditions made it impractical to deploy the autonomous manipulator 

arm. Instead, only the 3D mapping component was utilized to support rescuers and 

engineers in evaluating structural risks. This experience underscored the inherent 

difficulties of operating in actual disaster sites and highlighted the significant 

development still required before an autonomous arm can be safely and effectively 

deployed in such volatile conditions. Consequently, no experimental data from this 

real-world scenario is included in this thesis. 

4.2.1  Laboratory experiments 

  The linear-inspection task was tested with the robot positioned in front of 

the target, as well as at 45-degree angles to its left and right. Each of these setups was 

executed 50 times, recording essential metrics such as detection success rate, sub-

mission completion status, processing times for both 3D preprocessing and 3D ICP, 

operation time for each sub-mission, and the RMSE of the ICP algorithm. Additionally, 

the percentage of successful operations will be calculated from the aggregate laboratory 

trial data to represent the overall efficiency of the system. This metric provides a clear 

indicator of how consistently the system can detect and manipulate objects under 

controlled conditions. In FIGURE 4-3, The laboratory experiment is depicted via GUI, 

providing a clear snapshot of the system in operation under controlled testing 

conditions. 

 

TABLE 4-2  Process Time for Linear-Inspection Task 

Linear-Inspection Average of Process Time (sec) 

Type n Preprocess ICP sub1 sub2 sub3 sub4 sub5 

Left 50 0.43 1.95 10.71 6.04 9.96 9.80 6.44 

In front 50 0.43 1.88 10.61 6.12 9.80 9.69 6.53 

Right 50 0.40 2.02 10.03 6.12 10.17 9.74 6.73 

Total 150 0.42 1.95 10.45 6.09 9.98 9.74 6.57 
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FIGURE 4-3  Graphic User Interface of The System 

 

TABLE 4-3  RMSE of ICP Multi-Techniques 

Linear-Inspection Average of ICP RMSE 

Type n P2P C2C P2PL C2C 

Left 50 7.90E-03 7.71E-03 8.01E-03 7.70E-03 

In front 50 7.85E-03 7.91E-03 7.88E-03 7.90E-03 

Right 50 7.90E-03 7.71E-03 8.01E-03 7.70E-03 

Total 150 7.88E-03 7.78E-03 7.97E-03 7.77E-03 

 

 The laboratory experiment has done overall 150 iterations of operating to 

determine the performance of the autonomous manipulator with dexterity task at the 

iRAP Robot club, King Mongkut's University of Technology North Bangkok as shown 

in TABLE 4-2, TABLE 4-3, and TABLE 4-4. From the TABLE 4-2, Preprocessing 
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involved preparing the point cloud by constructing it from the color and depth images, 

reducing its resolution through downsampling, and extracting relevant features. The 

ICP phase utilized an iterative closest point algorithm to align the newly acquired point 

cloud with a reference model. Within each task, sub(n) refers to the five sub-missions 

that collectively define the full objective. As shown in TABLE 4-3 , three loss 

calculation methods Point-to-Point (P2P), Point-to-Plane (P2PL), and Color-to-Color 

(C2C, also called color registration) were used to evaluate ICP accuracy. The table 

clearly indicates both the time the system required to complete each sub-mission and 

the resulting ICP errors across these different loss computation approaches. 

 

TABLE 4-4  The Statistic of The Auto Dexterity Laboratory Experiment Result 

Angle 
Detect Sub-mission 

n Score Percentage n Score Percentage 

Left 50 47 94.00% 235 224 95.32% 

In front 50 49 98.00% 245 239 97.55% 

Right 50 48 96.00% 240 231 96.25% 

Total 150 144 96.00% 720 694 96.39% 

 

4.2.1  Field experiment 

  The RoboCup Rescue League implemented a structured scoring system that 

assigned each task a point value reflecting its complexity and operational significance. 

For instance, the linear-inspection task granted 1 point per subtask, enabling 

participants to earn up to 5 points. By contrast, the more complex omni-inspection task 

was awarded 2 points per subtask, allowing for a maximum of 10 points. Lastly, the 

emergency push-button pressing (E-stop) presented the highest challenge, offering 10 

points per subtask and thus totaling a possible 50 points. During the competition itself, 

only the contestants were permitted in the arena, making it difficult to capture 

photographs once the event began. As a result, most of the available images were taken 

prior to the start of the official rounds as show in FIGURE 4-4. 

4.2.1.1  Score Multiplier, the scoring system incorporates multipliers based 

on the level of autonomy employed by the robot. Tasks completed via teleoperation are 

multiplied by a factor of 1. If radio communication degradation is introduced, the 

multiplier increases to 2, reflecting the added complexity. When the robot 

autonomously performs dexterity tasks after being teleoperatively guided to the task 

zone, the score is multiplied by 4. For fully autonomous operations, where the robot 

independently approaches the task and completes it without human intervention, the 

score receives the highest multiplier of 8.  
4.2.1.2  This experiment criterion is placed on evaluating the success of the 

robot’s processes, which are divided into two critical components: the pose estimation 

process (Detect) and the object interaction process (sub-mission). These elements are 

integral to the robot’s ability to navigate and execute dexterity tasks effectively, 

ensuring reliable performance in complex environments.  
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FIGURE 4-4  The Task Operation at The Arena Before Competition Begins 

 

TABLE 4-5  Stats of Detect and Sub-mission Across Maps and Sessions 

No. Map 

Prelims Semi-Final Final 

Detect 
Sub-

mission 
Detect 

Sub-

mission 
Detect 

Sub-

mission 

1 K-Rails 2/2 9/10 

2/2 8/10 1/2 4/10 2 Pallets Hurdles 1/1 3/5 

3 Continuous Ramps 1/2 4/10 

4 Crossing Ramps 1/2 4/10 

2/2 8/10 2/2 4/10 5 Incline/Center 1/1 3/5 

6 Sand & Gravel 2/2 4/10 

7 Avoid Holes 1/1 4/5 

2/2 8/10 2/2 7/10 
8 Doors 1/1 3/5 

9 Stairs 0 0 

10 Labyrinth 0 0 
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From TABLE 4-5 the header consists of, No.: Represents the serial number of the 

rows for each map category, Map: Lists the different types of maps or terrains where 

the detect and sub-mission are recorded (e.g., K-Rails, Pallets Hurdles), Prelims 

(detect/sub-mission): Indicates the count of automated detect and sub-mission in the 

preliminary session for each map, Semi-Final (detect/sub-mission): Shows the count of 

detect and sub-mission during the semi-final session for each map, Final (detect/sub-

mission): Displays the count of detect and sub-mission recorded during the final session 

for each map. Each column is subdivided into "detect" (count of successful poses 

estimation) and "sub-mission" (count of successful operate the sub-mission), providing 

detailed data for each session and map type. During the preliminary and semi-final 

rounds, the competition tasks that were able to be attempted included linear-inspection, 

omni-inspection, linear-touch, omni-touch, linear-insert, and omni-insert. In the final 

round, the range of tasks expanded to incorporate linear-inspection, omni-inspection, 

linear-touch, omni-touch, linear-insert, omni-insert, valve-closing, emergency push-

button, and key-insertion. However, given the scope of this system, the focus remained 

on linear-inspection, omni-inspection, and the emergency push-button. As a result, 

linear-inspection and omni-inspection tasks were executed during the preliminary and 

semi-final rounds, while all three targeted tasks linear-inspection, omni-inspection, and 

emergency push-button were performed in the final. 

 
TABLE 4-6  The Statistic of The Auto Dexterity Field Experiment Result 

No. Type 
Detect Sub-mission 

Round Score Percentage Round Score Percentage 

1 Linear Inspect 12 11 92% 55 41 75% 

2 Omni Inspect 11 10 91% 50 36 72% 

3 Push E-stop 3 2 67% 10 6 60% 

 

4.3  Performance Evaluation and Observations 

 The evaluation of the system’s overall performance encompassed a series of staged 

experiments ranging from controlled laboratory setups to the high-pressure 

environment of the RoboCup Rescue League, followed by a deeper analysis of the 

collected data. Across these trials, the focus remained on assessing how effectively the 

robot could detect, localize, and manipulate various objects while adapting to different 

levels of environmental complexity. Broadly, the results revealed that while the robot 

demonstrated strong capabilities in recognizing and inspecting targets, the success rate 

and efficiency varied according to both the task’s complexity and the operational 

context. Stable detection and precise object handling were achieved more consistently 

under controlled conditions, whereas unpredictability in the field setting posed 

additional challenges. Nonetheless, the knowledge gained from each phase contributed 

valuable insights into the strengths and limitations of the system’s autonomous 

manipulator, laying a foundation for targeted improvements in future deployments. 
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4.3.1  Laboratory Experiment 

  In the laboratory setting, a multi-step process was used to both detect and 

interact with objects, providing insights into overall system efficiency and reliability. 

As indicated in TABLE 4-2, the detection phase which integrates both 3D 

preprocessing and the initial ICP calculation took an average of 2.37 seconds per trial. 

This part of the workflow involves creating the point cloud from the color and depth 

images, downsampling it to manage computational load, and then using ICP to match 

the scene’s cloud to a pre-defined reference model. Once an object’s position and 

orientation had been established, the sub-mission phase ensued, with timing that 

depended primarily on the trajectory generated by the MoveIt STOMP planner. This 

planner was responsible for producing a collision-free path for the robotic arm, thus 

contributing to variations in execution times across different runs. In scenarios where 

the arm needed to navigate around obstacles or approach the target from a challenging 

angle, sub-mission durations naturally increased. TABLE 4-3 further illustrates the 

comparative performance of ICP when augmented by color registration. Generally, 

applying color registration after point-to-point or point-to-plane ICP reduced the RMSE 

between the scene and reference model, indicating a more accurate alignment. 

However, in certain instances, particularly those involving inconsistent lighting or a 

significant discrepancy in the number of points between the reference model and the 

real scene, the color-based approach did not yield improved results. Such variations can 

arise when the controlled lighting conditions under which the reference model was 

created differ substantially from those in the lab environment at the time of testing, 

affecting how colors are perceived and, consequently, how effectively they can be used 

in the registration process.  

 Despite these occasional setbacks, the system demonstrated a robust performance 

overall. TABLE 4-4 shows that from the moment the robot-initiated object detection to 

the point at which the sub-mission concluded, the average completion time was 

approximately 45.2 seconds. Throughout 150 test iterations, the system maintained a 

detection accuracy of 96% and a sub-mission completion rate of 96.39%, underscoring 

both the repeatability and precision of the proposed method. These results confirm that 

while certain environmental factors like lighting and point cloud quantity can introduce 

variability, the system’s foundational architecture largely succeeds in reliably detecting 

and interacting with objects within controlled laboratory conditions. 

4.3.2  Field Experiment 

  Three major tasks linear-inspection, omni-Inspection, and emergency push 

button were assessed across multiple arenas, as summarized in TABLE 4-5 and then 

combined in TABLE 4-6. The data indicates that both linear and omni-inspection tasks 

generally achieved higher success rates than the more complex emergency push button 

task. Specifically, the linear-inspection maintained a 92% detection rate over 12 

attempts and a 75% sub-mission completion rate across 55 sub-missions. Omni-

inspection showed similarly strong performance, with a 91% detection success across 

11 attempts and a 72% sub-mission completion rate out of 50 sub-missions. The 

emergency push button task, attempted only three times, exhibited the lowest rates, 

completing detection successfully 67% of the time and registering a 60% sub-mission 

success over 10 attempts. This discrepancy largely stems from the different degrees of 

complexity and precision each task requires. Inspection tasks typically involve 
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identifying and localizing objects a process that is less constrained by the robot’s sensor 

limitations and mechanical tolerances.  

 By contrast, the emergency push button task demands precise interaction and close 

tolerance, conditions that can be challenging for robotic arms and sensors to fulfill 

reliably. This challenge is further amplified by the high sensitivity of the robot’s 

feedback mechanisms, making it difficult to maintain consistent performance when 

physically interacting with the environment. Additionally, it is important to note that 

these success percentages were influenced by the limited number of competition 

rounds. Because teams only had a handful of attempts to demonstrate each capability, 

any single error had a pronounced effect on the overall percentages. With more trial 

iterations, it would expect the data to stabilize, presenting a clearer assessment of true 

system performance. Nonetheless, the existing results underscore the system’s 

strengths in inspection tasks while highlighting areas such as high-precision detection 

that require further refinement. 

4.3.3  Summary of System Performance 

  The results from both the laboratory and field experiments illuminate the 

system’s key strengths while also underscoring specific limitations that emerge in less 

predictable environments. Under controlled lab conditions, the manipulator 

consistently demonstrated high detection accuracy and robust pose estimation. With a 

stable light source, clearly defined object shapes, and a regulated workspace, advanced 

methods like ICP had minimal difficulty aligning reference models to actual objects. In 

this setting, sub-mission completion rates and task precision remained consistently 

high. However, the transition to a competitive field setting introduces significant 

uncertainty. In the RoboCup Rescue League, external factors such as compressed 

timeframes, restrictive safety protocols, and the complexities of competition logistics 

can quickly erode the system’s performance margins. Operators often need to limit or 

forgo attempts if there is any substantial risk to the robot, given that a single hardware 

failure may affect not only the team’s performance but also the result of the overall 

event. Consequently, decisions made under pressure tend to be on the side of caution, 

reducing opportunities to test the system’s full capabilities. 

 Moreover, the complexity of certain objects and tasks amplifies these challenges. 

When objects lack distinct edges or uniform shapes, ICP can converge on local minima 

or fail to align properly, thereby compromising subsequent manipulations. In a 

controlled lab environment, such errors can be diagnosed and corrected in iterative 

cycles, but the high-stakes nature of a competition permits little time to troubleshoot. 

Likewise, tasks demanding narrower tolerances like emergency push button presses 

magnify even small inaccuracies in pose estimation or motion planning. Taken together, 

these observations highlight the necessity for further refinement in robotic design and 

algorithms. While controlled tests confirm the feasibility of high-performance detection 

and manipulation, real-world scenarios including demanding competition settings 

require solutions that can reliably cope with partial data, fluctuating lighting, and 

safety-driven constraints. Overcoming these obstacles will be essential for advancing 

autonomous manipulators capable of responding effectively to the unpredictable 

demands of real disaster environments. 

 

 



 

 

 

 

CHAPTER 5  
CONCLUSION 

 
 In this section, a comprehensive review of the research findings, an analysis of 

encountered issues, and a set of recommendations for future improvement have been 

compiled in the following order. 

 1. Summary of the Research 

 2. Problems Encountered 

 3. Suggestions 

 

5.1  Summary of the Research 

 This thesis focuses on the development and implementation of an advanced object 

interaction system, integral to the autonomous manipulator arm designed by the iRAP 

Robot team. The project, titled "Implementing Advanced Object Interaction in Rescue 

Robotics Using an Autonomous Manipulator Arm," highlights the design and 

performance of a system that earned the team the Best-in-Class Dexterity award at the 

RoboCup Rescue Robot Competition 2024. The research emphasizes the integration of 

perception, planning, and control to enable precise and reliable object manipulation in 

disaster scenarios. The object interaction system leverages custom-built mechanical, 

electrical, and software components to achieve robust functionality. Central to the 

system are the following modules: 

5.1.1  Object Detection 

  The process of object detection in this system utilizes RGB-D cameras, 

which combine regular RGB images with depth information, providing a detailed 3D 

view of the environment. This rich data allows for identifying objects with greater 

accuracy, even in cluttered or complex surroundings. The system leverages YOLOv8, 

a state-of-the-art object detection model, which excels at real-time performance and 

high detection accuracy. By training YOLOv8 on a diverse dataset of object images, 

the model can recognize and localize various objects efficiently. The combination of 

RGB-D cameras and YOLOv8 ensures reliable detection and spatial positioning of 

objects, which is critical for downstream processes like pose estimation and 

manipulation. 

5.1.2  Pose Estimation 

  Pose estimation involves determining the exact position and orientation of 

objects detected within the robot's workspace. This process employs advanced point 

cloud processing techniques, where the depth data from RGB-D cameras is converted 

into 3D point clouds. These point clouds are then aligned with pre-scanned 3D models 

of the objects using Iterative Closest Point (ICP) methods. Multiple ICP variations, such 

as point-to-point and point-to-plane, are used to refine alignment accuracy by 

minimizing discrepancies between the detected object and its model. The use of ICP 

not only ensures precise alignment but also addresses challenges posed by occlusions 

or noise in the data, providing the robot with reliable pose information to execute tasks 

effectively. 
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5.1.3  Trajectory Planning 

  To ensure smooth and collision-free movements of the robotic manipulator, 

the system utilizes trajectory planning tools. The TRAC-IK solver, known for its fast 

and reliable inverse kinematics calculations, is employed to determine the required joint 

configurations for the manipulator to reach its target. This is integrated with MoveIt 
STOMP planner, a powerful motion planning framework that generates optimized 

paths for the robot’s movements. MoveIt considers the manipulator’s kinematics, 

obstacles in the environment, and predefined safety constraints, ensuring that the 

robot’s actions are efficient, precise, and safe. The resulting trajectories allow the 

manipulator to interact with objects seamlessly, avoiding collisions with obstacles or 

other parts of the robot. 

5.1.4  Impact Detection,  

  To enhance safety and precision during object manipulation, the system 

integrates Inertial Measurement Unit (IMU) sensors into the robotic setup. These 

sensors are capable of detecting changes in acceleration and orientation, which helps 

identify any unintended contact between the manipulator and the objects or 

environment. If an impact is detected, the system can immediately respond by adjusting 

the manipulator’s actions or halting operations to prevent damage. This feature not only 

ensures the safety of the robot and the objects it interacts with but also improves the 

reliability of tasks performed in dynamic or unpredictable environments. The 

integration of IMU sensors represents a critical safeguard in maintaining the systems 

operational. 

 The system successfully demonstrates advanced dexterity by performing tasks 

such as linear inspection, omni-inspection, and emergency button pressing with high 

levels of accuracy and autonomy. Key innovations include multi-method ICP alignment 

for pose estimation and trajectory planning designed to adapt to variable task 

geometries and tolerances. These enhancements enable the system to excel in tasks 

requiring precise object handling, even in environments with constrained spaces and 

degraded sensor data. While the unified system enhances overall performance, it also 

introduces challenges in diagnosing and resolving compounded errors across 

interconnected modules. The research underscores the necessity of balancing 

sophisticated algorithms with practical considerations, such as hardware reliability and 

real-world adaptability. Furthermore, the system’s robustness is tested against 

unanticipated object geometries, revealing the importance of human intervention for 

objects beyond predefined parameters. 

 The iRAP Robot team’s achievement at RoboCup 2024 reflects the success of this 

integrated approach, demonstrating that advanced object interaction systems can 

significantly enhance robotic dexterity. This research serves as a foundational step 

toward bridging the gap between competition-grade robotics and real-world 

deployment in urban search and rescue scenarios. 

 

5.2  Problems Encountered 

 The development and implementation of the advanced object interaction system 

revealed several challenges, each significantly influencing the system’s performance 
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and reliability. These problems were not isolated but deeply interconnected, amplifying 

their impact on the system. 

5.2.1  Integration Challenges 

  Bringing together the core modules of perception, planning, and control into 

a unified framework introduced unforeseen complexities. While each module operated 

effectively in isolation, their integration revealed a cascade effect, where errors in one 

component propagated through the system. For instance, if the perception module 

provided an incorrect pose estimation, the planning module would generate misaligned 

trajectories, and the control module would execute inaccurate movements. 

Troubleshooting such issues became a significant bottleneck, as pinpointing the origin 

of a failure was often obscured by the interconnected nature of the system. This not 

only consumed valuable time during development but also led to inefficiencies in real-

world applications, such as repeated failed attempts to grasp objects or aborted tasks in 

critical scenarios. 

5.2.2  Environment Adaptation 

  Another major limitation was the system’s reliance on static trajectory 

planning, which lacked the ability to adapt to dynamic environments. This rigidity 

meant that the system was ill-equipped to handle unexpected changes in its 

surroundings, such as shifting debris or the sudden appearance of obstacles in the 

manipulator’s path. Without the capability to recalibrate its trajectory in real-time, the 

robot frequently misinterpreted environmental factors, leading to collisions or task 

failures. For example, during the competition’s dexterity challenges, the robot might 

attempt to press an emergency push button but fail due to a small, unnoticed obstruction. 

Such limitations not only reduced task success rates but also highlighted the system’s 

vulnerability in high-stakes scenarios where adaptability is crucial. 

5.2.3  Unfamiliar Objects 

  A significant challenge arose when the system encountered objects outside 

its predefined database. The robot’s object interaction capabilities were heavily reliant 

on a prior catalog of known objects, complete with detailed geometric and feature data. 

When presented with unfamiliar items, the system lacked the ability to generalize or 

adapt autonomously, instead requiring manual operator intervention to define the 

object’s parameters. This interruption undermined the system’s autonomy, introducing 

delays and breaking the seamless execution of tasks. In real-world rescue missions, 

where robots often face unpredictable and diverse objects, this limitation becomes a 

critical hindrance, reducing the system’s effectiveness and scalability. 

 Together, these challenges hindered the system’s efficiency and reliability. 

Integration issues compounded errors, making operations less predictable and harder to 

optimize. The inability to adapt to dynamic environments exposed the system to failures 

in unpredictable scenarios, while its dependency on predefined object data restricted its 

application to controlled settings. These factors collectively diminished the system’s 

autonomy, extended task completion times, and reduced overall success rates, both in 

the competition and in simulated rescue environments. 

 Addressing these problems is essential for improving the system’s robustness and 

applicability. Incorporating dynamic environmental sensing, real-time adaptive 

planning, and advanced object recognition capabilities will be pivotal steps in 

enhancing the system’s reliability, scalability, and autonomy in future iterations. 
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5.3  Suggestions 

 Addressing the challenges faced during the development of the advanced object 

interaction system requires targeted improvements across multiple areas. These 

refinements are not just incremental enhancements but pivotal steps toward creating a 

more robust, adaptive, and efficient system. The following suggestions outline 

transformative changes that would significantly enhance the system’s performance, 

reliability, and applicability in dynamic environments. 

5.3.1  Refinement of ICP and Contextual Pose Estimation 

  One of the core improvements lies in refining the Iterative Closest Point 

(ICP) algorithm, which plays a critical role in aligning the robot’s perception with real-

world object geometries. Currently, ICP primarily relies on minimizing Root Mean 

Square Error (RMSE) to align point clouds, which, while effective, can lead to false 

alignments in scenarios with complex or ambiguous object features. By incorporating 

contextual information such as the object's known position relative to its environment 

or prior task-specific knowledge the system could significantly reduce alignment errors. 

For example, when handling irregularly shaped objects, integrating spatial awareness 

or task-specific constraints could improve pose estimation precision. This refinement 

would enhance the robot’s accuracy in identifying and manipulating objects, 

particularly in cluttered or high-stakes environments. 

5.3.2  Closed-Loop Control for Real-Time Adaptation 

  Introducing a closed-loop control mechanism with continuous 

environmental monitoring would enable the system to dynamically adapt to changes in 

its operating environment. Real-time feedback from sensors, such as depth cameras and 

IMUs, could be used to adjust the robot’s trajectory mid-operation. This would address 

the current limitation of static trajectory planning, allowing the robot to respond 

effectively to dynamic scenarios, such as moving obstacles or shifting debris. For 

instance, in a disaster scenario, if a piece of debris unexpectedly falls into the 

manipulator’s path, the system could recalibrate its movement in real time to avoid 

collisions and maintain task accuracy. This capability would not only improve 

operational efficiency but also significantly increase the robot’s reliability in 

unpredictable environments. 

5.3.3  Trajectory Optimization for Unique Kinematics 

  The robot’s central prismatic joint introduces a unique kinematic 

configuration that requires specialized trajectory planning. Current methods often result 

in suboptimal joint movements, leading to inefficient or unnecessarily complex motion 

paths. By optimizing the trajectory planner to account for the robot’s specific 

kinematics, the system could ensure smooth, energy-efficient, and precise motions. For 

example, incorporating kinematic constraints that balance the extension of the prismatic 

joint with rotational movements of other joints would minimize unnecessary 

adjustments, enhancing both speed and accuracy. This improvement would be 

particularly beneficial in scenarios requiring precise positioning, such as inserting 

objects into tight spaces or navigating narrow corridors. 

5.3.4  Integration of Vibrational Sensing 

  Embedding flexible vibration-sensing components within the manipulator’s 

gripper would add a tactile dimension to the robot’s interaction capabilities [16]. These 

sensors would provide real-time feedback on contact with objects, enabling the system 

to detect and respond to subtle changes in force and alignment. For instance, during a 
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delicate task like pressing an emergency push button, the gripper could use vibrational 

feedback to ensure the button is fully pressed without applying excessive force that 

could damage the mechanism. Similarly, vibration sensing could enhance pose 

estimation by detecting micro-movements during object alignment, reducing the 

likelihood of errors. This improvement would make the system more adept at handling 

tasks requiring precision and care, significantly increasing its effectiveness in both 

competition and real-world rescue scenarios. 
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